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A two-particle model is formulated which approximates the motion of the 
forwardmost particle in a lattice gas, which has recently been analyzed and 
numerically simulated. The lattice gas, which evolves on a linear chain, consists 
of particles which jump to each vacant nearest neighbor site with rate 7/2 and 
also create new particles at these sites with rate 1/2. This model is known to 
exhibit statistically steady propagation of the forwardmost particle, with mean 
propagation velocity converging to  (2~') 1/2 for large 7. Here, a two-particle 
representation is used to estimate the propagation velocity for finite y. The 
results are in good agreement with numerical simulations of the lattice gas. 
Implications concerning front propagation in diffusion-reaction systems are 
discussed. 

KEY WORDS: Lattice gas; interacting particle system; velocity selection; 
diffusion-reaction equation. 

1. I N T R O D U C T I O N  

A lat t ice-gas  mode l  which provides  a s imple p a r a d i g m  for front  
p r o p a g a t i o n  in di f fus ion-react ion systems has recent ly been in t roduced.  (;~) 
The  mode l  consists  of  sites, labeled by integers - ~  < i <  + ~ ,  each of 
which is vacant  [ s ta te  r / ( i ) = 0 ]  or  occupied  by a single par t ic le  [ s ta te  
q(i)  = 1 ]. A par t ic le  ad jacen t  to a vacant  site j u m p s  to that  site with rate  
7/2, or  creates a new par t ic le  a t  tha t  site with rate  1/2. Equivalent ly ,  the 
s ta te  vector  q(i) evolves by independent ,  r a n d o m  exchanges of s tate 
between each pa i r  of ad jacen t  sites with rate  7/2 per  pair ,  and  by r a n d o m  
change of  each vacant  site i to occupied  at  a ra te  [ i f ( i -  1) + t/(i + 1)]/2.  
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The model captures certain qualitative features of interacting particle 
systems involving diffusion and irreversible chemical reaction. In particular, 
the site occupancy u(i) = P[q(i) = 1 ] obeys the diffusion-reaction equation 

ut-~--'u xx + u ( 1 - u )  (1) 

where x = i/x/7, in the hydrodynamic limit ~ --+ oo. Solutions of Eq. (1) are 
known (5'6) to relax from a step-function initial condition to a steadily 
propagating form u(x, t)= u(x-  vct/x/7), where 

vc = (22) 1/2 (2) 

(c denotes the continuum limit.) 
For the lattice-gas model, various equivalent definitions of the 

propagation velocity v can be formulated/z'3) Here it is defined to be the 
velocity of the rightmost particle, based on an initial state in which there 
exists a rightmost particle. 

It has recently been proven {2) that vc as given by Eq. (2) is also the 
propagation velocity for the lattice-gas model in the limit 7 ~ oe. This 
result demonstrates a microscopic selection principle consistent with the 
selection principle governing the continuum formulation. 

It has been noted ~'4) that the y dependence of the propagation velocity 
v away from the hydrodynamic limit is also physically and mathematically 
interesting. For small ~, it is easily shown (2'4) that 

v = (1 + 7)/2 (3) 

to O(7). It is not obvious what functional form v(2) assumes in the trans- 
ition between the limiting forms (2) and (3). Computations (3'4) indicate 
that the large-7 result (2) is approached slowly as 7 increases. No 
explanation of this slow convergence has been offered, 

This slow convergence and other features of v(7) are of physical 
interest in the context of flame-front propagation through turbulent fuel- 
air mixtures. (4) Various functional dependences have been postulated ~7) to 
relate measured flame speed to turbulence intensity. It is recognized that 
the respective limits of strong and weak turbulence intensity are 
qualitatively distinct, but no model has been proposed which captures both 
limits and the transition between them. If the exchange-rate parameter 7 of 
the lattice-gas model is interpreted as the scaled turbulence intensity, then 
v(7 ) can be interpreted as the turbulent flame speed. On this basis, 
numerical simulations of the lattice gas have been compared to measured 
flame speeds. (4) 

No progress has been reported in solving exactly for v(7) away from 
the respective limits. Here, an approximate solution is obtained for all 
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by formulating a two-particle representation of front propagation. The 
two-particle model involves a self-consistent correction to compensate for 
neglected multiparticle effects, with a free parameter that is adjusted so that 
the model satisfies Eq. (2) for large 7. The model yields an algebraic 
equation involving v and 7. This equation gives numerical values of v which 
are within 10% of values obtained from the lattice-gas simulations, which 
span four orders of magnitude in 7. Curiously, the best agreement is 
obtained for 7 of order unity, for which multiparticle effects are most 
influential. At large 7, the previously noted (3'4) slow convergence to the 
asymptotic 7 dependence is reproduced. The latter result implies that the 
convergence is not necessarily slow in the analytical sense, although it is 
numerically slow. Namely, the two-particle model yields an algebraic 
correction to Eq. (2) rather than, say, a logarithmic correction. 

The two-particle model is also compared to an ad hoc explicit 
expression for v. The ad hoc expression does not perform nearly as well. It 
is hoped that the present results will stimulate further efforts to determine 
v(7) either exactly or by a controlled approximation. 

Analysis of the two-particle model leads to a master equation which 
governs the transient evolution of the propagation velocity as well as its 
steady-state value. The transient evolution, which is of physical interest 
with regard to the early growth of a flame kernel, will be investigated in 
future work. 

2. M O T I V A T I O N  FOR THE T W O - P A R T I C L E  R E P R E S E N T A T I O N  

The propagation velocity of the rightmost particle in the lattice gas 
may be expressed as 

v=�89189 1)= 1] (4) 

where it=max{i: r/(i)= 1} is the location of the rightmost particle. The 
two-particle representation provides an estimate of P[~(ir-1)= 1] and 
thus of v. 

Equation (4) is obtained as the sum of the respective contributions of 
creation and jump events to the propagation velocity. Since site ir + 1 is 
vacant by definition, particle creation occurs at that site at a constant rate 
1/2, accounting for the first term in Eq. (4). Jump events induce no net 
velocity of the rightmost particle if site ir-- 1 is vacant, since the particle is 
equally likely to move in either direction. If site i t - 1  is occupied, only 
rightward jumps are allowed, inducing a net velocity 7/2. Multiplication by 
the probability of the latter condition yields the second term of Eq. (4). 

The two-particle representation is motivated by the velocity-selection 
principle governing Eq. (1). Namely, if the source term of that equation is 
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generalized to f(u),  where f is positive and concave for 0 < u < 1, then the 
propagation velocity, expressed in the coordinate i, is (s) v,. = [27f'(0)] ~/2. 
This result indicates that vc is sensitive only to the dynamics governing the 
forwardmost development of the site-occupancy profile. Based on the 
correspondence between the lattice-gas model for large ? and Eq. (1), and 
the equality of their respective propagation velocities in this limit, this 
inference may also be valid for the large-? limit of the lattice gas. 

These considerations motivate a truncated representation of the 
instantaneous state of the lattice gas, in which all but the two rightmost 
particles are discarded. Whenever a creation event adds a third particle, the 
leftmost of the three particles is discarded. Numbering particles from right 
to left, this representation differs from the dynamics of particles 1 and 2 of 
the lattice gas in that the effect of particle 3 on particle 2 is omitted. To 
compensate for this omission, a self-consistent correction to the dynamical 
rules governing particle 2 is proposed. (The correction is self-consistent in 
that it contains a quantity which governs the dynamics of particle 1.) The 
correction involves a free parameter that is adjusted so that the model 
satisfies Eq. (2) for large 7. 

Consideration only of the two rightmost particles is intuitively sound 
also in the limit ? ~ 0. In this limit, the lattice gas is rarely in a state such 
that the site to the left of particle 2 is vacant, so the interaction of par- 
ticles 1 and 2 with the rest of the system may be approximated by assuming 
that particles 2 and 3 are always adjacent. The self-consistent-correction 
incorporates this small-? behavior. 

The two-particle representation is difficult to justify for ? of order 
unity, for which neither rationale is applicable. Curiously, the model which 
is proposed based on consideration of the limiting behaviors is found to be 
quantitatively most accurate at ? of order unity. It is so accurate, in fact, 
that it is difficult to dismiss the numerical agreement as fortuitous. The 
results thus raise an interesting issue for analytical investigation. 

3. U N C O R R E C T E D  T W O - P A R T I C L E  M O D E L  

In this section, a two-particle system is analyzed in which the particles 
obey the same dynamics as the lattice gas, except that the leftmost particle 
is discarded after each creation event. In Section 4, the dynamics is 
modified based on the consideration of limiting behaviors. 

The state of the two-particle system is given by the respective locations 
il and i2 < il of particles 1 and 2. Since the evolution of the two-particle 
system depends only on the relative separation of the particles, the system 
is sufficiently characterized by the number j =  i l - i 2 - 1  of vacant sites 
between the particles. A master equation (a) is formulated for the 
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probabilities {p~} of states j = 0, 1 ..... where P0 is the two-particle analog of 
the quantity P[t/( ir-  1) = 1] in Eq. (4). 

The master equation is obtained by determining the rates for all 
transitions to and from a given state j. For example, state j > 0 can be 
reached from state j -  1 by a rightward jump of particle 1 or by a leftward 
jump of particle 2, each of which occurs with rate 7/2. Thus, the j -  1 --* j 
transition rate is 7. State j > 0 can be reached from state j + 1 by analogous 
mechanisms, and also by a creation event at site iz + 1, which occurs with 
rate 1/2. State 0 can be reached from any state j > 0 by a creation event at 
site i 1 + 1 or at site i 1 - 1. For  j >  1, each of these events occurs at rate 1/2. 
For j =  1, however, creation at site i l -  1 = i 2 + 1 occurs at rate 1. Jump 
events with total rate 7 also contribute to the 1 --* 0 transition rate. 

Having thus specified all the nonzero transition rates, one can express 
the master equation for the uncorrected two-particle model as 

p+=Tp+_l+(7+�89 j > 0  (5) 

/~0 = (7 + �89 Pl + 1 - (1 + y) Po (6) 

[The normalization 5~= o pj = 1 has been used to simplify Eq. (6).] 
Equations (5) and (6) govern the transient evolution as well as the 

steady-state equilibrium of the uncorrected two-particle model. The 
transient evolution may be obtained by solving Eqs. (5) and (6) for the 
initial condition P0 = 1, pj = 0 for j >  0. The equilibrium is obtained by 
setting all time derivatives equal to zero, yielding a set of linear recursion 
relations. The ansatz pj= p o ( 1 - p o )  j for all j > 0  satisfies Eqs. (5) and (6) 
and gives a quadratic equation for P0 whose solution satisfying 0 ~< P0 ~< 1 
for nonnegative 7 is 

1 
Po = 4 - - ~  [(167 + 9) 1/2 - 1] (7) 

For  7 = 0, Eq. (7) gives Po = 1, consistent with the behavior of the 
lattice-gas model as 7--*0. To leading order in 7>>1, Eq.(7)  gives 
Po=7 -1/2. Substitution of this result into Eq.(4)  gives v=(7/4) 1/2 to 
leading order, which is a factor of 81/2 smaller than the lattice-gas result, 
Eq. (2). This indicates that neglected multiparticle effects contribute to 
leading order in the hydrodynamic limit of the lattice gas. 

4. S E L F - C O N S I S T E N T  C O R R E C T I O N  

To compensate for neglected multiparticle effects, a self-consistent 
correction to the two-particle model is proposed. Particle 3 influences the 
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dynamics of particles 1 and 2 only when it is located at i3 = i2 -  1. Its 
influence under that circumstance is to prevent leftward jumps of particle 2. 
The assumption is adopted that the probability po that particle 3 is 
adjacent to particle 2 is independent ofj. Therefore, wherever a rate 7/2 
associated with a leftward jump of particle 2 contributed to a transition 
rate computed in Section 3, that rate is now replaced by �89 p~). The 
corrected master equation may now be expressed as 

1 - 27 -7 -~ -+  5 p:; j > 0  (8) /):=7 1 -  P j - I +  7 + ~  Pj+I 

/)0 = 7+ Pl + 1 -  7 - 7 - ~  -+1  Po (9) 

To complete the formulation of the corrected model, an expression for 
the dependence of pa on 7 must be specified. Since the correction is 
motivated by the need to incorporate multiparticle effects at large 7, the 
behavior of p~ in that limit is first considered. A feature of the continuum 
formulation, Eq. (1), is the vanishing of the derivative of u with respect to 
the spatial coordinate i as 7 ~ ~ .  This implies weak spatial variation of the 
particle number density in the lattice gas. Therefore, po should be of order 
P0 ~ 1 for large 7. This motivates the adoption of the expression 

po= B p o - ( B -  1)p~ (10) 

which specifies the 7 dependence of Pa implicitly for all ? through the 7 
dependence of Po. Equation (10) is of order Po for large 7, and has an 
additional term which assures that Pa has the correct behavior at P0 = 1, 
namely p~ = 1. The B is a free parameter which is evaluated shortly. 

The correction procedure which has been adopted is self-consistent in 
that the correction term is dependent on the quantity whose solution is 
sought. In this respect, the procedure bears some analogy to self-consistent 
closures sometimes adopted in truncation procedures for kinetic-equation 
hierarchies. The present approximation procedure may be regarded as a 
simple paradigm of such truncations, particularly because the present 
procedure is amenable to systematic improvement by generalizing to 
n-particle representations (albeit with as yet unknown convergence proper- 
ties for large n). 

The equilibrium solution of Eqs. (8) and (9) is obtained, as before, by 
adopting the ansatz p j=po(1 -po )  j for all j>~0, which satisfies those 
equations provided that 

(27+ 1 ) p ~ -  (7Pa-- 1 ) p o - 2 = O  (11) 
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Substitution of Eq. (10) for p,  gives 

2 ( B -  1)po3 + ( 2 7 -  yB + 1)po2 + p o - 2  = 0  (12) 

The parameter B is evaluated by requiring Po = (8/7) 1/2 to leading order in 
7>  1, consistent with Eqs. (2) and (4). With this requirement, Eq. (12) 
gives B = 7/4. For this value of B, Eq. (10) has the desirable property that 
Pa is a strictly increasing function of 0 ~< Po ~< 1. 

Equation (12), a cubic equation for Po, can be solved explicitly for 
Po(7). Alternatively, Eq. (2) can be used to reexpress this equation as a 
cubic equation for v, again explicitly solvable. To obtain numerical results, 
it is more convenient to work directly with Eq. (12), rewritten as 

8 - 4po(po + 1) 
7= po2(3po+ 1) (13) 

From this expression, 7 is determined for any P0, and v is then given by 
Eq. (4). 

The corrected two-particle model thus predicts a 7 dependence of v 
which is purely algebraic and therefore is devoid of terms like in 7. This 
observation is pertinent to the interpretation of the numerical results 
presented in the next section. 

5. N U M E R I C A L  R E S U L T S  A N D  C O M P A R I S O N S  

In Fig. 1, the 7 dependence of v computed using Eq. (13) is displayed 
along with simulated results for the lattice gas, which were reported in 
ref. 3. As in that reference, the quantity v/v c is shown in order to highlight 
the convergence to the hydrodynamic limit. For each 7 value, the plotted 
simulation result is the average of the velocity estimates corresponding to 
the largest value of the relaxation-time parameter k of ref. 3. 

In addition to the lattice-gas results of ref. 3, new simulation results 
are plotted, corresponding to an n-particle generalization of the un- 
corrected two-particle model. In these simulations, the leftmost particle is 
discarded after each creation event. Simulations were performed for n = 3, 
5, and 10, where n is the initial number of particles. The interface method 
described in ref. 3 was used. For each 7 value, k was chosen to be as large 
as or larger than the value of k in the corresponding lattice-gas simulation. 
Each plotted point is the average of two velocity estimates, one based on 
Eq. (4) and one based on the velocity of the rightmost particle. 

Also shown in Fig. 1 is an ad hoc functional dependence, 

V ---- 1 .+. 17 (  1 ..{_ 17 ) - -1 /2  (14) 

822/53/3-4-1t 
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Fig. 1. Dependence of the scaled propagation velocity v /v  c [where vc= (27) 1/2] on the 
exchange-rate parameter 7- Simulation results are shown for the lattice gas (3) ( x ) and for the 
uncorrected n-particle model, where n = 3 (A), 5 ([~), and 10 (�9 Also shown are the y 
dependence of the corrected two-particle model (solid curve) and an adhoc functional 
dependence (dashed curve). For all simulation results, the error bars are narrower than the 
width of the solid curve. 

which is based on Eq. (4) and the assumption P [ t / ( 4 - 1 ) = l ] =  
E1 + (7/8)] -1/2. The latter expression is adopted because it is a simple form 
which interpolates between known behaviors at large 7 and at 7 =0 .  
Equation (14) is included in the comparisons in order to assess the utility 
of the mechanistic approximation of the previous section relative to 
straightforward interpolation. 

As shown in the figure, values of v predicted by the corrected two- 
particle model are within 10% of values obtained from the lattice-gas 
simulations, which span four orders of magnitude in 7. As remarked earlier, 
the best agreement is obtained for ? of order unity, for which multiparticle 
effects are ostensibly most influential. At large 7, both the simulations and 
the two-particle representation exhibit slow convergence to the asymptotic 
? dependence. This indicates that the convergence is not necessarily slow in 
the analytical sense (e.g., logarithmic), since the two-particle functional 
dependence is purely algebraic, as noted earlier. This question can be 
resolved conclusively only by analytic investigation. 

Figure 1 also indicates the superior performance of the two-particle 
representation relative to the adhoc postulated form, Eq.(14). This 
provides strong evidence of the mechanistic validity of the two-particle 
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representation, particularly at intermediate ,/ values for which it has no 
obvious justification. 

The n-particle simulation results indicate that is not necessary to go to 
very large n to obtain results as good as or better than the corrected 
two-particle prediction over a wide range of 7 values. It is evident, however, 
that convergence of the n-particle results to the lattice-gas results is not 
uniform in 7. It is not known whether a corrected n-particle representation 
can be formulated so as to obtain uniform convergence. 

6. D I S C U S S I O N  

The salient features of the two-particle representation of front 
propagation in the lattice gas are as follows. First, it exploits the velocity- 
selection principle, which indicates that the forwardmost particles of the 
lattice gas are most influential in determining the propagation velocity in 
the hydrodynamic limit. Second, it incorporates a self-consistent correction 
which is formulated so as to match known results in the respective limits of 
large and small exchange rate. Third, numerical results are in good 
agreement with lattice-gas simulations, particularly at exchange rates of 
order unity, for which the approximate representation has no a pr ior i  

justification. Fourth, the approach is subject to successive improvements by 
generalizing to an n-particle representation, although convergence, either 
pointwise or uniformly with respect to the exchange-rate parameter y, has 
not been proven. 

It has been noted that the lattice-gas model is a simple paradigm for 
diffusion-reaction systems, and that the two-particle representation is 
likewise a paradigm for closure approximations to kinetic-equation 
hierarchies. The former analogy was previously exploited in order to 
interpret turbulent flame propagation measurements. 

Another potentially useful analogy concerns recent efforts to formulate 
approximate models of interface evolution. ~ Namely, phenomenological 
reasoning is used to obtain differential equations governing the 
propagation of an interface based only on local geometrical properties of 
the interface, in particular its curvature. In other work, (1~ it has been 
shown that stochastic models of the microscopic dynamics can be useful for 
deriving properties of the differential equations obtained in the continuum 
limit. Here, an approximate procedure has been developed which, in effect, 
localizes the dynamics governing a stochastic interface propagation 
problem. The success of this approach suggests the following strategy for 
approximating other nonlocal interface propagation problems: local 
approximations to the underlying microscopic dynamics might approxi- 
mate the nonlocal dynamics in the continuum limit. 
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